Find the equation of the straight line that is tangent to the curve 2x^2 - 5x - 3 =0 when x = 3.

First differentiate 2x2 - 5x - 3 to get 4x -5. At x = 3, the gradient of the tangent must be 7, and we know it goes through (3, 0) Plug the values into y = mx + c to get the equation of the line, which is y = 7x -21

SL
Answered by Sarah L. Maths tutor

2982 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is red shift?


Solve the following set of simultaneous equations: (eq.1) x + 3y = 10, (eq.2) 2x + y = 5


What is the inverse of a function and how do you find it?


Solve 3x² + 6x – 2 = 0. Give your solutions correct to 2 decimal places [calculator paper]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning