Factorise fully y=x^2+x-12 and hence find the roots of the curve

To factorise a quadratic in the form ax^2+bx+c we need to find 2 numbers which add to get b and multiply to get c. In this case a=1, b=1 and c=-12. Two numbers which add to 1 and multiply to -12 are 4 and -3, so we can factorise this equation into two brackets: (x-3)(x+4). To check we are correct we can re-expand the brackets using the FOIL method (first, outer, inner, last), hence giving us x^2+4x-3x-12, which simplifies to... x^2+x-12. Now we can find the roots of the curve (the points at which the curve crosses the x-axis). These points are where y=0, so we sub this value into our equation: (x-3)(x+4)=0. We can now split the equation into its two brackets as anything multiplied by 0 is 0. Therefore x-3=0 and x+4=0, therefore the points at which this curve crosses the x-axis are x=3 and x=-4.

RW
Answered by Rhys W. Maths tutor

2979 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these simultaneous equations, 2x+y=6 and 3y-x=11


Solve the simultaneous equations 3x + y = 4 x + y = 2


The area of a square is 49cm^2. The perimeter of the square is equal to the circumference of a circle. what is the radius of the circle?


Two shops have deals for purchasing pens: "3 for £2" and "5 for £3" . Mr. Papadopoulos wants to buy 30 pens for his class in school, which deal should he use if he wants to spend the least amount of money possible, and how much will he spend?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning