The Curve C has the equation 2x^2-11+13. The point Q lies on C such that the gradient of the normal to C at Q is -1/9. Find the x-co-ordinate of Q

The first ste here is the find the general equation for the gradient tangential to the curve. This is done by differentiation of the equation to give 4x-11=dy/dx. dy/dx is the gradient. Now we are given the gradient of the normal. As Mt*Mn=-1 we can find that the tangential gradient is 9. plugging this into the equation we can see that 4x-11=9. rearrage to find x so x=20/4 so x=5

MH
Answered by Matthew H. Maths tutor

4980 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the solutions to the following equation x^2 - 5*x + 6 = 0


Sam uses 140g of flour to make 12 cakes. How much flour will Sam need to make 21 cakes?


Solve 5x^2 = 10x + 4 Give your answers to 2 decimal places. [4 marks]


Solve algebraically: 6a+b = 16 and 5a - 2b = 19


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning