The Curve C has the equation 2x^2-11+13. The point Q lies on C such that the gradient of the normal to C at Q is -1/9. Find the x-co-ordinate of Q

The first ste here is the find the general equation for the gradient tangential to the curve. This is done by differentiation of the equation to give 4x-11=dy/dx. dy/dx is the gradient. Now we are given the gradient of the normal. As Mt*Mn=-1 we can find that the tangential gradient is 9. plugging this into the equation we can see that 4x-11=9. rearrage to find x so x=20/4 so x=5

MH
Answered by Matthew H. Maths tutor

4989 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A circle C1 has a centre at (3,0) and a radius 8. A second circle C2 has a centre (x,0) and radius 6. Given the radii of the 2 circles meet at right angles. Find x


Rearrange the formula to make 'y' the subject: x = (1 - 2y)/(3 +4y)


Solve the simultaneous equations: 6x +2y = 2 and 12x - 3y = 18


The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning