The Curve C has the equation 2x^2-11+13. The point Q lies on C such that the gradient of the normal to C at Q is -1/9. Find the x-co-ordinate of Q

The first ste here is the find the general equation for the gradient tangential to the curve. This is done by differentiation of the equation to give 4x-11=dy/dx. dy/dx is the gradient. Now we are given the gradient of the normal. As Mt*Mn=-1 we can find that the tangential gradient is 9. plugging this into the equation we can see that 4x-11=9. rearrage to find x so x=20/4 so x=5

MH
Answered by Matthew H. Maths tutor

4991 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The probability of pulling out a coloured counter from a bag is shown below: Green=0.2. Purple=0.15. Black=0.3. Pink=?. What is the probability of pulling out a pink counter?


Give the value of 15^0.


Factorise and solve: x^2 - 8x = -15


https://revisionmaths.com/sites/mathsrevision.net/files/imce/1MA0_1F_que_20160526.pdf Question 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning