The Curve C has the equation 2x^2-11+13. The point Q lies on C such that the gradient of the normal to C at Q is -1/9. Find the x-co-ordinate of Q

The first ste here is the find the general equation for the gradient tangential to the curve. This is done by differentiation of the equation to give 4x-11=dy/dx. dy/dx is the gradient. Now we are given the gradient of the normal. As Mt*Mn=-1 we can find that the tangential gradient is 9. plugging this into the equation we can see that 4x-11=9. rearrage to find x so x=20/4 so x=5

MH
Answered by Matthew H. Maths tutor

4984 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Shampoo is sold in two sizes. 1) 500 ml for £1.98 2) 3 litres for £12.80 (now 15% off). Which is better value for money?


Show that 12 cos 30° -2 tan 60° can be written in the form square root k where k is an integer.


Solve 2x^2 - x - 21 by factorising


Solve 3x^2 + 13x + 14 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning