Rationalise the denominator of the following fraction: 1/(√2 + 1)

  • Google+ icon
  • LinkedIn icon
  • 1572 views

We start with 1/(√2 + 1) 

Normally with rationalising surd denominators we multiply the top and bottom of the fraction by the denominator. But this time we have a surd ADDED by a rational number. 

In this case we multiply the top and bottom by the denominator with the connecting + or - sign REVERSED ie by:(√2 - 1)

So we get

(√2 - 1) / (√2 + 1)(√2 - 1) 

The bottom is multiplied out like a quadratic... a special type of quadratic [(a - b)(a + b)]. A handy but not vital rule to remember is:

(a - b)(a + b) = a2 - b2 

So back to our fraction, we get

(√2 - 1) / (2 - √2 + √2 - 1)

= (√2 - 1) / (2 - 1)   

= (√2 - 1) / 1

= √2 - 1 --> our final answer!

If you would like more examples, as usual BBC Bitesize is good at walking through the solutions to a number of types of questions on surds: http://www.bbc.co.uk/education/guides/z7fbkqt/revision/2 

Richard M. GCSE Italian tutor, GCSE Geography tutor, GCSE History tut...

About the author

is an online GCSE Maths tutor with MyTutor studying at Oxford, Keble College University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok