Rationalise the denominator of the following fraction: 1/(√2 + 1)

We start with 1/(√2 + 1) 

Normally with rationalising surd denominators we multiply the top and bottom of the fraction by the denominator. But this time we have a surd ADDED by a rational number. 

In this case we multiply the top and bottom by the denominator with the connecting + or - sign REVERSED ie by:(√2 - 1)

So we get

(√2 - 1) / (√2 + 1)(√2 - 1) 

The bottom is multiplied out like a quadratic... a special type of quadratic [(a - b)(a + b)]. A handy but not vital rule to remember is:

(a - b)(a + b) = a2 - b2 

So back to our fraction, we get

(√2 - 1) / (2 - √2 + √2 - 1)

= (√2 - 1) / (2 - 1)   

= (√2 - 1) / 1

= √2 - 1 --> our final answer!

If you would like more examples, as usual BBC Bitesize is good at walking through the solutions to a number of types of questions on surds: http://www.bbc.co.uk/education/guides/z7fbkqt/revision/2 

RM
Answered by Richard M. Maths tutor

29604 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A ladder 6.8m long is leaning against a wall, the foot of the ladder is 1.5m from the wall, find the height that the ladder reaches up the wall.


Solve the equation: (2x+3)/(x-4)-(2x-8)/(2x+1)=1


Solve 2x + 7 = 13


Write down the coordinates of the turning point of the graph y = x^2 – 8x + 25


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning