Solve the simultaneous equations: x^2 + y^2 = 5 and y = 3x + 1

x2 + y2 = 5 1y = 3x + 1 2Inserting 2 into 1: x2 + (3x +1)2 = 5 Expanding the brackets: x2 + 9x2 + 3x + 3x + 1 = 5Collecting like terms: 10x2 + 6x - 4 = 0Using the quadratic formula: x = (-6 ± √(62 - 4 * 10 * -4))/(2 * 10)Simplifying: x = ( -6 ± √(36 + 160))/20Simplifying further: x = (-6 ± √196)/20Solving for x: x = (-6 ± 14)/20 x1 = (-6 + 14)/20 or x2 = (-6 - 14)/20 x1 = 8/20 or x2 = -20/20 x1 = 0.4 or x2 = -1Substituting x1 and x2 into 2: y1 = 3x1 + 1 or y2 = 3x2 + 1 y1 = 3(0.4) + 1 or y2 = 3(-1) + 1 y1 = 1.2 + 1 or y2 = -3 + 1 y1 = 2.2 or y2 = -2Rewrite answers: x1 = 0.4 and y1= 2.2 x2 = -1 and y2 = -2

SB
Answered by Sophie B. Maths tutor

5202 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify 3(2x + 5) – 2(x – 4)


A class has 30 students. The mean height of the 14 boys is 1.52m. The mean height of all the students is 1.48m. Work out the mean height of the girls.


What's the difference between the mean, median and mode?


solve for x: (x-2)(x+3)=2(2x+11)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences