The acid dissociation constant, Ka, of ethanoic acid is 1.78 x 10^-5 at 298K. Given that the concentration of a sample of ethanoic acid is 0.4moldm^-3, calculate its pH at 298K.

Using the acid dissociation equation, Ka = [H+][A-]/[HA]. (where Substitute the known values into the concentration to give 1.78x10-5= [H+][A-]/0.4 . Because the acid is dissociating in solution the acid dissociates in water which is neutral, then [H+] and [A-] must be equal. So we can write: [H+]2/0.4=1.78x10-5. So [H+]2 =7.12x10-6 and [H+] = 2.67x10-3.Substitute [H+] into the pH equation: pH =-log[H+] = -log[2.67x10-3] = 2.57

SR
Answered by Sita R. Chemistry tutor

12591 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

Which are the principles and application of IR spectroscopy


What are reaction rates and what are the associated factors?


Give the name of the monomer used to make poly(chloroethene). And describe how monomer molecules form polymer molecules.


Diamond and Graphite are both giant covalent structures. If they are both made of carbon why does diamond have a higher melting point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning