The acid dissociation constant, Ka, of ethanoic acid is 1.78 x 10^-5 at 298K. Given that the concentration of a sample of ethanoic acid is 0.4moldm^-3, calculate its pH at 298K.

Using the acid dissociation equation, Ka = [H+][A-]/[HA]. (where Substitute the known values into the concentration to give 1.78x10-5= [H+][A-]/0.4 . Because the acid is dissociating in solution the acid dissociates in water which is neutral, then [H+] and [A-] must be equal. So we can write: [H+]2/0.4=1.78x10-5. So [H+]2 =7.12x10-6 and [H+] = 2.67x10-3.Substitute [H+] into the pH equation: pH =-log[H+] = -log[2.67x10-3] = 2.57

SR
Answered by Sita R. Chemistry tutor

14033 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

What at the alkali metals?


Aspirin C9H8O4 is made when salicylic acid C7H6O3 reacts with ethanoic anhydride C4H6O3 . The equation for this reaction is: C7H6O3 + C4H6O3 → C9H8O4 + CH3COOH Calculate the maximum mass of aspirin that could be made from 100 g of salicylic acid.


25cm3 NaOH was titrated with 0.05mol dm-3 HCl. 21.5m3 of HCl neutralised 25cm3 of NaOH. What is the concentration of NaOH in mol dm-3?


What is a catalyst?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning