Solve the simultaneous equations x^2+ y^2 = 29 and y–x = 3

For this question we will be using the substitution method in order to solve this question. Firstly we will take the less complex equation and rearrange to make either x or y the subject of the formula. We will make y the subject of the formula in this case. So y-x = 3 becomes y = x+3. We will now substitute this equation for y into our other equation. So x^2+y^2 = 29 will now become x^2+(x+3)^2 = 29. Next we will expand and simplify this equation. x^2+(x+3)^2 = 29 now becomes x^2+3x-10=0. This is a quadratic equation, this can be solved using the quadratic formula giving answers of x = -5 and x = 2. These two values for x can now be substituted back into the eqaution y-x = 3 to give y = -2 (for x = -5) and y = 5 (for x=2). These are the solutions to the equation.

RC
Answered by Rio C. Maths tutor

3534 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand (x+3)(x+4)


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel


5x+3=2x+9 What is the value of x?


(b) In 2013, the price for each unit of electricity was 13.5 cents. Over the next 3 years, this price increased exponentially at a rate of 8% per year. Calculate the price for each unit of electricity after 3 years


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences