Solve the simultaneous equations x^2+ y^2 = 29 and y–x = 3

For this question we will be using the substitution method in order to solve this question. Firstly we will take the less complex equation and rearrange to make either x or y the subject of the formula. We will make y the subject of the formula in this case. So y-x = 3 becomes y = x+3. We will now substitute this equation for y into our other equation. So x^2+y^2 = 29 will now become x^2+(x+3)^2 = 29. Next we will expand and simplify this equation. x^2+(x+3)^2 = 29 now becomes x^2+3x-10=0. This is a quadratic equation, this can be solved using the quadratic formula giving answers of x = -5 and x = 2. These two values for x can now be substituted back into the eqaution y-x = 3 to give y = -2 (for x = -5) and y = 5 (for x=2). These are the solutions to the equation.

RC
Answered by Rio C. Maths tutor

3616 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find an expression for the nth term of the following sequence: 7, 11, 15, 19


What are the two roots for the equation x^2 + 7x + 10 = 0


What does it mean to "complete the square"?


Using simultaneous equations find x & y. Equation A: 3x + 2y = 3 -y and Equation B: 5x + 3y = 6 + x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences