What is the integral of sin^2(x)?

From the double angle formula for cosine, we know that cos(2x)=cos2(x)-sin2(x). Also, we know that sin2(x)+cos2(x)=1. So by substituting the second formula into the first, we can say that cos(2x)=(1-sin2(x))-sin2(x)=1-2sin2(x)

By rearranging, this gives sin2(x)=1/2-1/2cos(2x). Now, the right hand side of this equation can be more easily integrated with regards to x.

The integral of cos(ax) is (1/a)sin(ax). So, the indefinite integral of the RHS (and hence sin2(x)) is (1/2)x-1/4sin(2x)+C for some arbitrary constant, C.

JB
Answered by Jonathan B. Maths tutor

6393 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation: dy/dx = tan^3(x)sec^2(x)


Given that x = cot y, show that dy/dx = -1/(1+x^2)


How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


Solve the equation 2ln2x = 1 + ln3. Give your answer correct to 2dp.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning