What is the integral of sin^2(x)?

From the double angle formula for cosine, we know that cos(2x)=cos2(x)-sin2(x). Also, we know that sin2(x)+cos2(x)=1. So by substituting the second formula into the first, we can say that cos(2x)=(1-sin2(x))-sin2(x)=1-2sin2(x)

By rearranging, this gives sin2(x)=1/2-1/2cos(2x). Now, the right hand side of this equation can be more easily integrated with regards to x.

The integral of cos(ax) is (1/a)sin(ax). So, the indefinite integral of the RHS (and hence sin2(x)) is (1/2)x-1/4sin(2x)+C for some arbitrary constant, C.

JB
Answered by Jonathan B. Maths tutor

6020 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the inverse of a 2x2 matrix?


Integrate x * sin(x) with respect to x by using integration by parts


The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0


Differentiate with respect to x: 3 sin^2 x + sec 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning