find the second degree equation that passes through the points: (0,1) (2,2) (1,0)

first of all we have to recognise the general form of the equation, similar to the equation of a line but we just have to add one more term due to the fact that it is a second degree equation: y=ax2+bx+c. We can see that we have 3 unknowns and 3 points as well, so by replacing the couples of points ("x","y") in the general equation we get the 3 unknowns a,b and c.The value of c is the intersection between the curve and the vertical axis when x=0. When the value of a is positive, the curve will have an upward concavity, if negative it will have a downward concavity. So the process is:the first equation gives us 1=0+0+c, so c=1; the second and third equations are: 2=4a+2b+c, 0=a+b+c. From the last one we get a=-b-c=-b-1 and we replace it in the second one, from where we get b: 4(-b-1)+2b=1 and b=-5/2 the a=3/2.

LG
Answered by Luca G. Maths tutor

3056 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Work out 2(3/4)*1(5/7). Give your answer in mixed number form.


How should I calculate the values of a and b when a(4x+12) is equivalent to 2x+36b?


There are 40 pencils in a box. There are 15 pens in a packet. John gives one pencil and one pen to each person at a conference. He has no pencils or pens left. How many boxes of pencils and how many packets of pens did John buy?


Sarah plans to paint a rectangular wall of dimensions 8.7m x 2.3m. A tin of paint costs £16.10 and covers 6 metres squared. Sarah has a budget of £56, can she afford to paint the wall? Explain your reasoning.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning