Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.

Take u = 1+3x2 , this gives that y = u1/3 . By the chain rule we have that dy/dx = dy/du * du/dx. By differentiating y = u1/3 with respect to u gives dy/du = (1/3)u-2/3. By differentiating u = 1 + 3x2 with respect to x gives du/dx = 6x. Using the formula highlighted gives the answer dy/dx = 2x(1+3x2)-2/3 which we have obtained by substituting u back in.

JS
Answered by Jasmine S. Maths tutor

4827 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of [ 2x^4 - (4/sqrt(x) ) + 3 ], giving each term in its simplest form


Use logarithms to solve the equation 2^5x = 3^2x+1 , giving the answer correct to 3 significant figures.


Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2


How would I solve the equation 25^x = 5^(4x+1)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning