The function f has domain (-∞, 0) and is defines as f(x) = (x^2 + 2)/(x^2 + 5) (here ^ is used to represent a power). Show that f'(x) < 0. What is the range of f?

First notice that f(x) = u/v. So f'(x) =[ v(u') - u(v')]/v2 (the Quotient rule). After working it out, we find f'(x) = 6x/(x2 + 5)2 (the steps can be shown on the whiteboard). Since the denominator is always positive and the numerator is always negative we conclude that f'(x) is always negative.The range of f is (2/5, 1). One way of explaining this is that when x gets very close to -∞, x2 gets close to +∞ and therefore f(x) gets close to 1. When x is close to 0 (but still in the domain), the x-squared terms are very small so f(x) gets close to 2/5.

CC
Answered by Chris C. Maths tutor

2988 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.


Solve 4cos(2x )+ 2sin(2x) = 1 given -90° < x < 90°. Write 4cos(2x )+ 2sin(2x) in the form Rcos(2x - a), where R and a are constants.


Find the stationary points of y= 5x^2 + 2x + 7


Prove by induction that the nth triangle number is given by n(n+1)/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning