The function f has domain (-∞, 0) and is defines as f(x) = (x^2 + 2)/(x^2 + 5) (here ^ is used to represent a power). Show that f'(x) < 0. What is the range of f?

First notice that f(x) = u/v. So f'(x) =[ v(u') - u(v')]/v2 (the Quotient rule). After working it out, we find f'(x) = 6x/(x2 + 5)2 (the steps can be shown on the whiteboard). Since the denominator is always positive and the numerator is always negative we conclude that f'(x) is always negative.The range of f is (2/5, 1). One way of explaining this is that when x gets very close to -∞, x2 gets close to +∞ and therefore f(x) gets close to 1. When x is close to 0 (but still in the domain), the x-squared terms are very small so f(x) gets close to 2/5.

CC
Answered by Chris C. Maths tutor

2982 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In what useful ways can you rearrange a quadratic equation?


A particle P is projected vertically upwards from a point 20m above the ground with velocity 18m/s, no external forces act on it other than gravity. What will its speed be right before it hits the ground? Give your answer to one decimal place.


What is the probability to obtain exactly 2 heads out of 3 tosses of a fair coin?


How do I show that (cos^4x - sin^4x) / cos^2x = 1 - tan^2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning