Solve simultaneously: x^2+y^2=25 and y-3x=13

The substitution method means we have to rearrange the linear equation to find a variable, either x or y, then substitute it into the quadratic (and more difficult to solve) equation, as follows...x2+y2=25 y=3x+13x2+(3x+13)2=25x2+9x2+78x+169=2510x2+78x+144=05x2+39x+72Factorise...(5x+24)(x+3)=0x=-24/5, x=-3Sub in linear equation for y...when x=-24/5, y=-7/5when x=-3, y=4

SC
Answered by Saffron C. Maths tutor

2812 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A circle with centre C has equation x^2 + y^2 + 2x - 6y - 40 = 0. Express as (x - a)^2 + (y - b)^2 = d.


If 11 carrots weigh 170g how much would 20 carrots weigh?


Use these 2 simultaneous equations to find x & y: 5y+21=9x and 6x+7y=45


In a group of 120 people, 85 have black hair, 78 have brown eyes and 20 have neither black hair nor brown eyes. Find the probability of a random person being picked having black hair, given they have brown eyes


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences