Use integration by parts to integrate the following function: x.sin(7x) dx

Integration by parts follows the general form: ∫u (dv/dx) = u.v - ∫v (du/dx)Let x = uLet sin 7x = (dv/dx)∫x.sin(7x) dx = x.(-1/7)cos(7x) - ∫(-1/7)cos(7x).1 dx = (-x/7)cos(7x) + (1/49)sin(7x) + c

AN
Answered by Ahanna N. Maths tutor

4214 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = (5x+4)/(3x -8) at the point (2, -7)


The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y


How would I answer this question? Use factor theorem to show (x-2) is a factor of f(x) = 2x^3 -7x^2 +4x +4.


Prove algebraically that n^3+3n^2+2n+1 is odd for all integers n


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences