Use integration by parts to integrate the following function: x.sin(7x) dx

Integration by parts follows the general form: ∫u (dv/dx) = u.v - ∫v (du/dx)Let x = uLet sin 7x = (dv/dx)∫x.sin(7x) dx = x.(-1/7)cos(7x) - ∫(-1/7)cos(7x).1 dx = (-x/7)cos(7x) + (1/49)sin(7x) + c

AN
Answered by Ahanna N. Maths tutor

4396 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation sin2x = tanx for 0° ≤ x ≤ 360°


Question shown in the answer section as a hyperlinked link.


What is the natural logarithm?


Given the parametric equations x = t^2 and y = 2t -1 find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning