Solve the following simultaneous equations 3x+y=11 and 2x+y=8

To solve a simultaneous equation you should number your equations and re arrange one of them to make y the subject. (You could do it the other way and find the expression for x first)3x + y = 11 [1] and 2x + y = 8 [2]. Re arranging equation [1] we will get the following equation by subtracting 3x from both sides. y = 11 - 3x. Then by substituting the expression for y into equation [2] you can solve for x, giving x = 3. Then we can find the value of y by substituting the value we found for x into equation [1]3(3) + y = 11. 9 +y = 11, giving y =2

RA
Answered by Rachel A. Maths tutor

2921 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that 12 cos 30° - 2 tan 60° can be written in the form√ k where k is an integer


(a) Expand and simplify (x − 3)(x + 5), ..2 marks.. (b) Solve x^2 + 8x − 9 = 0 ..3 marks..


Jenny has 3 stacks of coins - A B and C. Altogether the coins equal £1.30. Stack B has 3 times as much money has Stack A. Stack C has 2 times as much money as Stack B. How much money is in Pile C?


Solve the following simultaneous equations: (1) 2y + x = 8, (2) 1 + y = 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning