Solve the following simultaneous equations 3x+y=11 and 2x+y=8

To solve a simultaneous equation you should number your equations and re arrange one of them to make y the subject. (You could do it the other way and find the expression for x first)3x + y = 11 [1] and 2x + y = 8 [2]. Re arranging equation [1] we will get the following equation by subtracting 3x from both sides. y = 11 - 3x. Then by substituting the expression for y into equation [2] you can solve for x, giving x = 3. Then we can find the value of y by substituting the value we found for x into equation [1]3(3) + y = 11. 9 +y = 11, giving y =2

RA
Answered by Rachel A. Maths tutor

3156 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 3x² + 6x – 2 = 0. Give your solutions correct to 2 decimal places [calculator paper]


3 shops sell TVs and all 3 are having sales. Here are the three original prices of the TVs and their discounts: X12: £150 (25%), Teli-vise: £235 (1/2 off), Xpert: £60 (with a year of weekly £8 payments). Which TV is the cheapest once discounted.


If a line t (f(x) = 2x +3) is perpendicular to a line n that passes through point (3,7), what is the equation of line n?


Simplify fully (x^2 + 3x)/(4x + 12) ​


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning