Solve the simultaneous equations 5x + y = 21 and x - 3y = 9

To begin with, I would begin by explaining that in a situation with simultaneous equations one of the variables must be eliminated to find the values for y and x.In this specific case I would make the x variables have the same coefficient and multiply the second equation by 5 giving 5x-13y=45The next step would be to subtract one equation from the other as so: 5x-13y=45 - 5x + y = 21 resulting in an answer of -16y=24This equation can rearrange to y= -1.5Using this value in either of the original equations you can solve for xBy using x-3y=9 and rearranging for x to give x=9+3y then substituting in the value for y to obtain x=4.5

LO
Answered by Lily O. Maths tutor

3043 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

40 students were surveyed: 20 have visited France 15 have visited Spain 10 have visited both France and Spain. Use this information to complete a Venn Diagram


Expand and Simplify: 6(2x+3) -x(3+(1/x))


Expand and simplify (5a-2b)(3a-4b)


Prove that the square of an odd number is always 1 more than a multiple of 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning