When and how do I use the product rule for differentiation?

As the name suggests, the product rule is used to differentiate a function in which a product of 2 expressions in x exists. This means the two expressions in x are multiplied by each other, even when the function is expressed in its simplest form. An example would be y=x3e2x. The product rule is written by generalising one expression in x as u and the other as v: 

If y=u*v then

dy/dx= udv/dx + vdu/dx

This means that, to dfferentiate, we multiply each expression in x by the derivative of the other and add the results. This is illustrated by the example below: 

 y=x3e2x

let u= x3                 v=e2x

du/dx = 3x2            dv/dx= 2e2x

for this example: 

                       dy/dx = u dv/dx + v du/dx

                                = x3*2e2x +  e2x*3x2 

                                = e2x(2x3 + 3x2)

RT
Answered by Rachel T. Maths tutor

11483 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


How do you integrate the function cos^2(x)


Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants


At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning