When and how do I use the product rule for differentiation?

As the name suggests, the product rule is used to differentiate a function in which a product of 2 expressions in x exists. This means the two expressions in x are multiplied by each other, even when the function is expressed in its simplest form. An example would be y=x3e2x. The product rule is written by generalising one expression in x as u and the other as v: 

If y=u*v then

dy/dx= udv/dx + vdu/dx

This means that, to dfferentiate, we multiply each expression in x by the derivative of the other and add the results. This is illustrated by the example below: 

 y=x3e2x

let u= x3                 v=e2x

du/dx = 3x2            dv/dx= 2e2x

for this example: 

                       dy/dx = u dv/dx + v du/dx

                                = x3*2e2x +  e2x*3x2 

                                = e2x(2x3 + 3x2)

RT
Answered by Rachel T. Maths tutor

12015 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.


Find the equation of the normal to the curve y = 2x^2 -3x +7 at the point x = 1.


Find the first derivative of f(x) = tan(x).


The line AB has equation 5x + 3y + 3 = 0 . (a) The line AB is parallel to the line with equation y = mx + 7 . Find the value of m. [2 marks] (b) The line AB intersects the line with equation 3x -2y + 17 = 0 at the point B. Find the coordinates of B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning