Find the minimum value of the quadratic equation: y = x^2 + 4x - 12

To find the minimum point of a quadratic equation, the quadratic should be written in the form '(x+a)2+ b', i.e. completing the square, where the coordinates of the minimum point will be (-a,b). To complete the square of the above equation, halve the coefficient of x (number before x) to find the value of 'a' that goes inside the bracket - this is 4 divided by 2, which is 2. To find the letter 'b', take the constant from the end of the quadratic (in this case -12) and subtract the value of a2 from it, so b = -12 - (2*2) = -12 - 4 = -16. Combining these, the quadratic can be written in the completed square form: y = (x+2)2-16. This answer can be checked by multiplying out the brackets and seeing if it is equal to the original quadratic: (x+2)2-16 = x2+ 2x + 2x + 4 - 16 = x2 + 4x = 12 --> this is equal to the original quadratic equation, to the completed square form y = (x+2)2-16 is correct, giving a minimum point of (-2, -16).

RB
Answered by Rebecca B. Maths tutor

5624 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I factorise quadratic equations?


Find the value of 9^(-1/2)


Line Q goes through (0,5) and (4,7). Find the equation of Line Q in the form y = mx + c


Solve the simultaneous equations A and B: [A] 2x + y = 18 [B] x - y = 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences