Prove that √2 is irrational

Begin by assuming that √2 is rational, and can therefore be written as √2 = p\q where p and q are coprime integers.By squaring both sides, you get the result 2 = p2\q2, which rearranges to show that p2=2q2.This implies that p2 is even, and therefore p must also be even. Therefore p=2a where a is an integer.By substituting p=2a into our equation, and then rearranging, we get the result q2=2a2This implies that q2 is even, and therefore q must also be even, so we can write q=2b, where b is an integer.From this it follows that √2 = p/q = 2a/2b which shows that p and q have a common factor of 2, however, we have stated that p and q are coprime, and therefore we have a contradiction. Our original assumption must therefore be false, and therefore √2 must be irrational.

AS
Answered by Anika S. Maths tutor

2510 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to factorise quadratic equations?


A bottle contains 300ml of medicine, the dose for a child can be given by (m*a)/150 where m is the child's age in months and a is the adult dosage of 40ml. If you need 2 doses a day, how long will the medicine last until it's empty for a 2y/o child?


Simplify the following expression: ( (x^5) / (x^2) ) ^ 4


Show that 6sin(60◦) + 5tan(60◦) can be written in the form √k where k is an integer.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences