Prove that √2 is irrational

Begin by assuming that √2 is rational, and can therefore be written as √2 = p\q where p and q are coprime integers.By squaring both sides, you get the result 2 = p2\q2, which rearranges to show that p2=2q2.This implies that p2 is even, and therefore p must also be even. Therefore p=2a where a is an integer.By substituting p=2a into our equation, and then rearranging, we get the result q2=2a2This implies that q2 is even, and therefore q must also be even, so we can write q=2b, where b is an integer.From this it follows that √2 = p/q = 2a/2b which shows that p and q have a common factor of 2, however, we have stated that p and q are coprime, and therefore we have a contradiction. Our original assumption must therefore be false, and therefore √2 must be irrational.

AS
Answered by Anika S. Maths tutor

3123 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you work out the mean of a set of numbers?


Solve the linear equation 4x+5=-6x+15


A bag contains beads, 60% of which are green. A student claims that the probability of getting two green beads if the beads aren't replaced is 1/3 as 6/10 * 5/9 is 1/3. Is the student right?


Simplify (2sin45 - tan45)/(4tan60) and leave your answer in the form of (sqrt(a)-sqrt(b))/c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning