A scalene triangle ABC has side lengths AB=6cm, BC=4cm, and AC=x cm. The angle A, opposite BC, is 40 degrees and the angle B, opposite AC, is 50 degrees. State the sine rule and use it to find the value of x to 3 s.f.

The sine rule states that for any scalene triangle ABC the following equation holds: BC/sin(A) = AC/sin(B) = AB/sin(C).[Draw a diagram.] By drawing the triangle and substituting the values that we know into the equation, we get the following: 4/sin(40) = x/sin(50) = 6/sin(C)Angle C does not help us find x so we focus on the left-hand equation: 4/sin(40) = x/sin(50) Then multiply through by sin(50) to make x the subject and get: x = 4*sin(50)/sin(40) Use your calculator to obtain the value of x: x = 4.76701437 The question has asked us for an answer to 3 significant figures though, so we round to x = 4.77.

TC
Answered by Thomas C. Maths tutor

3907 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the intercept between the two equations below?


Using factorization, solve x^2 + 10x + 24 = 0


Adam is going to get a loan of £ 720 to help pay for the holiday. Adam will have to pay back the £ 720 plus interest of 15 %. He will pay this back in 12 equal monthly installments. How much money will Adam pay back each month?


Prove that the difference of the square of two consecutive odd numbers is always a multiple of 8. [OCR GCSE June 2017 Paper 5]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning