Find the tangent to the equation y=x^2 -2x +4 when x=2

When X=2 Y=2^2-2(2)+4=4 So the coordinates are (2,4)Differentiate Y so dy/dx = 2x-2Tangent Gradient when x=2 is 2(2)-2=2 so m=2We need to find the y intercept to get out tangent equationso y=2x+c , we sub in our coordinates to get 4=2(2)+c , c=0So therefore the tangent equation is y=2x

NN
Answered by Nabeel N. Further Mathematics tutor

1707 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Point A lies on the curve: y=x^2+5*x+8. The x-coordinate of A is -4. What is the equation of the normal to the curve at A?


Use the factor theorem to show that (x-1) is a factor of x^3 - 3x^2 -13x + 15


y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences