Find the solutions to the simultaneous equations

y - 2x = 3 x2 + y2 = 18Step 1- re-arrange the first formula to find y: y = 3 + 2x Step 2- Substitution: x2 + ( 3 + 2x )2 = 18 Step 3- Expand the brackets: ( 3 + 2x )( 3 + 2x ) = 9 + 6x + 6x + 4x2 x2 + 9 + 12x + 4x2 = 18 5x2 + 12x + 9 = 18 Step 4- Make the equation equal to zero and factorise: 5x2 + 12x - 9 = 0 ( 5x - 3 ) ( x + 3 ) = 0 Step 5- Solve for x: x = -3 or 3/5 Step 6- Substitute the x values into the original equation to find y: y - 2x = 3 y - 2 ( -3 ) = 3 y + 6 = 3 y = -3 or, y - 2 ( 3/5 ) = 3 y - 6/5 = 3 y = 4 1/5 Answer: x = -3 or 3/5 and y = -3 or 4 1/5

RH
Answered by Rebecca H. Maths tutor

2822 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write x² + 4x -16 = 0 in the form (x+a)² - b = 0. Solve the equation giving your answer in surd form as simply as possible.


f:x-->2x^2+1 and g:x--> 2x/(x-1) where x is not equal to 1. express the composite function gf as simply as possible


Write (x-2)/3 + (x+3)/5 as a single fraction


Solve n^2 – n – 90 = 0 to find value of n


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning