Complete the square for the equation x^2 - 12x + 8 = 0

To complete the square, we will need to put the equation into the form (x - a)2 - b + 8 = 0, where a is half of the coefficient of x (12 in this case) and b is the value we need to subtract in order for the new form of the equation to be equivalent to the original. To begin we initially get (x - 6)2 - b + 8 = 0 since 6 is half of 12. To find b we expand (x-6)2 to get x^2 - 12x + 36 so we realize we need to subtract 36. So our equation is (x - 6)2 - 36 + 8 = 0 which we can simplify to (x - 6)2 - 28 = 0.

MJ
Answered by Mark J. Maths tutor

3481 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that 3/8 divided by 7/12 = 9/14


Solve: x^2 – x – 12 = 0


Solve the simultaneous equations: 2x + y = 12; x - y = 6


What is the correct answer if you rearrange the following, making "c" the subject? (3c+b)/2 = c + a


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences