Complete the square for the equation x^2 - 12x + 8 = 0

To complete the square, we will need to put the equation into the form (x - a)2 - b + 8 = 0, where a is half of the coefficient of x (12 in this case) and b is the value we need to subtract in order for the new form of the equation to be equivalent to the original. To begin we initially get (x - 6)2 - b + 8 = 0 since 6 is half of 12. To find b we expand (x-6)2 to get x^2 - 12x + 36 so we realize we need to subtract 36. So our equation is (x - 6)2 - 36 + 8 = 0 which we can simplify to (x - 6)2 - 28 = 0.

MJ
Answered by Mark J. Maths tutor

3798 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the two simultaneous equations. 1. x^2 + y^2 = 25, 2. y - 3x = 13


Thomas wants to see how far he can throw a javelin. He records four of his throws as 45 metres, 40 metres, 55 metres, and x metres. Given that the mean of Thomas' throws is 50, determine the value of x.


a) Solve 6x + 13 =2x +5 (2 marks) b) Expand and simplify (q + 7)(q - 3) (2 Marks)


A ladder (length 314 cm) is leaning up against a wall. The length between the ladder and the wall is 1.54 m. At what angle is the ladder leaning up against the wall? Round your answer to 2 d.p.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning