Expand and simplify (n + 2)^3 − n^3.

Expand and simplify (+ 2)3 − n3.
Write out the brackets in full:(+ 2)(+ 2)(+ 2) − n3
Use F.O.I.L. (First, Outer, Inner, Last) on first two sets of brackets:(n2+ 2n + 2n + 4)(+ 2) - n3
Simplify by combining like terms (2n + 2n = 4n):(n2+ 4n + 4)(+ 2) - n3
Multiply each term in first set of brackets by each term in second set of brackets:(n3+ 4n2 + 4n + 2n2 + 8n + 8) - n3
As we're not multiplying anything more, the brackets can go:n3+ 4n2 + 4n + 2n2 + 8n + 8 - n3
Simplify by combining like terms (n3 terms cancel, 4n2 + 2n2= 6n2, 4n + 8n = 12n):6n2 + 12n + 8

DC
Answered by Dominic C. Maths tutor

4473 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The arithmetic series is given by (k+1)+(2k+3)+(3k+5)+...+303. a)Find the number of term in the series in terms of k. b) Show that the sum of the series is given by (152k+46208)/(k+2). c)Given that S=2568, find k.


Find the derivative of sin(x)/x^3 with respect to x


Differentiate the following: y=(7x^2+2)sinx


Differentiate x^2 + xy + y^2 =1 implicitly.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences