Expand and simplify (n + 2)^3 − n^3.

Expand and simplify (+ 2)3 − n3.
Write out the brackets in full:(+ 2)(+ 2)(+ 2) − n3
Use F.O.I.L. (First, Outer, Inner, Last) on first two sets of brackets:(n2+ 2n + 2n + 4)(+ 2) - n3
Simplify by combining like terms (2n + 2n = 4n):(n2+ 4n + 4)(+ 2) - n3
Multiply each term in first set of brackets by each term in second set of brackets:(n3+ 4n2 + 4n + 2n2 + 8n + 8) - n3
As we're not multiplying anything more, the brackets can go:n3+ 4n2 + 4n + 2n2 + 8n + 8 - n3
Simplify by combining like terms (n3 terms cancel, 4n2 + 2n2= 6n2, 4n + 8n = 12n):6n2 + 12n + 8

DC
Answered by Dominic C. Maths tutor

4810 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the Quotient rule, Find dy/dx given that y = sec(x)


When would you apply the product rule in differentiation and how do you do this?


What is product rule differentiation?


(C3 question). Find an expression for all stationary points on the curve y=sin(x)cos(x). How many such points are there and why?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning