Assuming no friction, describe the motion of a simple pendulum released from rest at t=0 at amplitude A? Provide information about its speed and position at characteristic times during one period. [The 1D equation of motion is described by a cosine]

The displacement of the bob of mass m is given by the equation x(t)=A cos(w*t), with no phase offset as given by the boundary conditions (zero speed at t=0). By differentiating this equation twice the first and second derivatives of displacement, i.e. speed and acceleration as a function of displacement can be obtained. By finding maxima of these quantities by looking at peaks of higher order derivatives, one can find the times t at which speed and acceleration are maximised and plot the graphs for one period.
Either we can treat this mathematically or provide physical insight into what should happen to the pendulum. As the pendulum is released from rest, the initial speed is zero. Due to the tangential component of the gravitational force, the bob of mass m is accelerated until it reaches a maximum speed at zero height. As the mass continues to move due to inertia and the gravitational force acting now opposite to its motion, it will slow down again and reach the same height as initially (assuming no air resistance etc.).

SA
Answered by Stefan A. Physics tutor

1691 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Why do objects reach terminal velocity?


A 100kg weight is placed 0.75 meters from a see-saw on the right hand side. Dan is 75kg. How far away does he have to sit from the pivot on the left hand side to have it balance?


A baseball player strikes a ball with an initial velocity of 43ms^-1 at an angle of 32° to the horizontal. How far does the ball travel horizontally in 4 seconds?


What is terminal velocity and what causes it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning