The equation of a curve is y=(x+3)^2 +5, what are the co-ordinates of the curve's turning point?

Differentiate y with respect to x:dy/dx = 2(x+3) = 2x+6When the above equation is equal to 0, this is where the turning point of the curve is.2x+6 = 02x = -6x = -3Therefore, at x = -3, the curve has a turning point. To find the y co-ordinate, substitute -3 into the original equation and solve for y:y=(-3+3)^2+5=5Therefore, the co-ordinates of the turning point are (-3,5)

HH
Answered by Harry H. Maths tutor

3630 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A square based pyramid with corners ABCD has side length 6 cm. The distance from the centre of the square (C) to the top vertex of the pyramid (V) is 4 cm. Work out the total surface area of the pyramid.


How do you solve an equation like: 5/(x+2) + 3/(x-3) = 2?


Solve the equation, x + 1 = x/2 + 4


Natasha has two bags of fruit. both bags have the same number of fruit in total. 1/3rd of the fruit in bag 1 are apples and 15% of the fruit in bag 2 are apples. There are 20 apples in bag 1, how many apples are in bag 2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning