Find the coordinates of the turning point of the curve y=x^2+3x+7

We know that turning points occur when the gradient is equal to zero. Hence, we differentiate this curve. dy/dx = 2x+3 and we set this equal to zero. This gives 2x+3=0, we then rearrange to get 2x=-3 and so x=-3/2. Placing this value of x back into the curve equation gives y=(-3/2)^2+3(-3/2)+7 and so y= 19/4. Therefore the coordinates of the turning point are (-3/2,19/4)

RH
Answered by Rosie H. Maths tutor

4903 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the two simultaneous equations: 2x - 5y = 11 and 3x + 2y = 7


How to determine the number of unique real roots of a quadratic equation.


Sean drives from Manchester to Gretna Green. He drives at an average speed of 50 mph for the first three hours. He then breaks and drives the final 150 miles at 30 mph. Sean thinks his average speed is 40 mph ,is he correct?


A scalene triangle ABC has side lengths AB=6cm, BC=4cm, and AC=x cm. The angle A, opposite BC, is 40 degrees and the angle B, opposite AC, is 50 degrees. State the sine rule and use it to find the value of x to 3 s.f.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning