A is the point (4,1). B is the point (10,15). Find the perpendicular bisector or of AB.

First, find the gradient, m, of the line AB. Gradient is given by: change in y / change in xChange in y = 15-1 = 14Change in x = 10-4 = 6Gradient = 14/6 = 7/3The perpendicular bisector is a straight line normal to the line AB.Perpendicular Gradient, mp = - 1/m Therefore mp = -3/7We know the perpendicular bisector is a straight line which has the general equation: y = mx + c.Where m is the gradient and c is the constant (y-intercept). We have found m, which in our case has been denoted as mp = -3/7 Substitute into y = mx + cy = -(3/7)x + cTo find c, we need to find a point that the perpendicular bisector goes through. This point would be the mid point of the line.Midpoint in x = (4+10)/2 = 7Midpoint in y = (1+15)/2 = 8So point at which perpendicular bisector ‘bisects’ AB is: (7,8) <- Midpoint of ABUsing this midpoint, let x = 7 and y = 8 in our equation y = -(3/7)x + c...8 = -(3/7)*7 + cc = 11So we can conclude that the perpendicular bisector of the line AB is: y = -(3/7)x + 11

OW
Answered by Ollie W. Maths tutor

7445 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to find the exact formula of the function if the graph of it is given?


How do you work out the tangent to a circle at a given point on the circle?


Given the two equations [1](3x + 4y = 23) and [2](2x + 3y = 16), find the values of x and y


Find the stationary points of y = x^3 -3x^2 - 9x +5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning