A particle, P, moves along the x-axis. At time t seconds, t > 0, the displacement, is given by x=1/2t^2(t ^2−2t+1).

Find the times when is instantaneously at rest.In order to solve this question we first have to multiply out in order to obtain the full expression of x which will be x = 1/2t^4 -2t^3+1/2t^2. Now we differentiate with respect to time we obtain v=2t^3 -3t^2+t. If P is suppose to be at rest then v will be equal zero. So we obtain an equation 0=2t^3-3t^2+t and solving the equation t(2t-1)(t-1)=0 and we obtain three different answers t=0, t=1/2 and t=1 and all answers are possible.

AK
Answered by Aleksander K. Maths tutor

17795 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the formula 5p + 2q = t to find the value of q when p = 4 and t = 24. 6


Differentiate y = (x^2 + 3)^2


The equation of a circle is x^2+y^2-6x-4y+4=0. i) Find the radius and centre of the circle. ii) Find the coordinates of the points of intersection with the line y=x+2


A curve has parametric equations x= 2sin(t) , y= cos(2t) + 2sin(t) for -1/2 π≤t≤ 1/2π , show that dy/dx = - 2sin(t)+ 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences