Work out the number of green pens in the box. (rest of Q below)

 There are only green pens and blue pens in a box. There are three more blue pens than green pens in the box. There are more than 12 pens in the box. Simon is going to take at random two pens from the box. The probability that Simon will take two pens of the same colour is 27/55. b= blue pens // g= green pens // x= total pens P(two of same colour) = P(green, green) + P(blue, blue) P(two of same colour) = (g/x)(g-1/x-1) + (b/x)(b-1/x-1)From Q: b = g + 3x = b + gx = (g + 3) + g = 2g + 3P(two of same colour) = (g/2g+3)(g-1/2g+2) + (g+3/2g+3)(g+2/2g+2) = 27/55Expanding + Solving: (g2-g)/(4g2+10g+6) + (g2+5g +6)/(4g2+10g+6) = 27/552g2+ 4g + 6 = 27/55 (4g2+10g+6) g2/55 - 5g/11 + 84/55 = 0g2 -25g +84 = 0 (g-21)(g-4) = 0 g= 21 g= 4BUT - Q states g > 12 Therefore g = 21

EH
Answered by Elinor H. Maths tutor

5044 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

(4x + 3)/(x + 1) + 2 = 8


How would you answer a frequency tree question such as '400 people were asked if they drink orange juice, 8/10 say yes, 25% of these say yes to drinking 3 cups a day. Complete the frequency diagram.'?


Prove algebraically that (4n + 1)² − (2n − 1) is an even number for all positive integer values of n.


Show that (2x^2 + x -15)/(2x^3 +6x^2) * 6x^3/(2x^2 - 11x + 15) simplifies to ax/(x + b) where a and b are integers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning