Solve the following system of equations simultaneously to find the values of x, y and z. 2x+3y+4z=3, -x-y+z=1, 2x+y-z=0

First scale one of the equations so that upon addition or subtraction from another of the equations we cancel one of the 3 variables, next do this again replacing one of the equations used with the unused equation so that we now have 2 equations in terms of just 2 of the 3 variables. Now, solve these equations by removing a variable in the same manner as before to get a value for one of the 3 variables. Substitute this value back into one of the formed equations to get another variable's value. Finally, substitute both known values into one of the original equations and solve to find the final variable's value. Answers: x=1 y=-1 z=1

SA
Answered by Shaun A. Maths tutor

2761 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The circle c has equation x^2+ y^2 = 1. The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


How do you work out the gradient of a straight line?


Work out the solutions to the following quadratic equation: x² + 7x + 10 = 0 by factorising.


Solve 4(x+3)=2x+8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning