the function f is such that f(x)=(2x-7)/4. Fnd f(-7) and the inverse of the function.

to find the first part we just need to plug in the value-7 in the expression for f replacing our independant value, x .f(-7)=(2*(-7)-7)/4 =(-14-7)/4 =-21/4to find the second part we need to interchange the position of x and y.here we set y as f(x). y=(2x-7)/4interchange their position: x=(2y-7)/4and then rearrange to make the new y the subject again. 4x=2y-74x+7=2y2x+7/2=yhence the invesrse function : f^-1(x)= 2x+7/2

EG
Answered by Emily G. Maths tutor

2774 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

GCSE: I don't understand how to rationalise denominators


Solve the following pair of simultaneous equations: 1. 3x + 2y = 9 2. 6x + 5y = 21


Rearrange the following to make 'm' the subject. 4(m - 2) = t(5m + 3)


i) The point A on a graph is (6,-7), and point B is (3,5). Calculate the equation of the straight line that passes through both A and B. ii) Does the line pass through the point C (-2,26)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences