Suppose we have a circle with the equation x^2 +y^2 =25. What is the equation to the tangent to the circle at point (4,3)?

Firstly lets draw it out-Draw a line from the origin to the point. calculate the change in y over change in x =(3-0)/(4-0)=3/4Take negative reciprocal which is equal to m. Then do y-y1=m(x-x1 ) or y = mx +c to get the final answer y=-(4/3)+25/3

NM
Answered by Nayan M. Maths tutor

2944 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Given the points (6,6) and (10,8) calculate the gradient of the line passing through them and the point at which it intersects the y-axis?


Complete the square on the equation (x^2)-4x-3


Expand and simplify (x+2)(x+3)


Solve the quadratic equation x^2 + 3x + 2 = 0, by factorisation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning