Suppose we have a circle with the equation x^2 +y^2 =25. What is the equation to the tangent to the circle at point (4,3)?

Firstly lets draw it out-Draw a line from the origin to the point. calculate the change in y over change in x =(3-0)/(4-0)=3/4Take negative reciprocal which is equal to m. Then do y-y1=m(x-x1 ) or y = mx +c to get the final answer y=-(4/3)+25/3

NM
Answered by Nayan M. Maths tutor

2701 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 5x + 3y = 24 and 3x - 4y = 26


What do the interior angles in a hexagon add up to?


How do you factorise x^2 -4 = 0?


Solve the simultaneous equations: 3x + 2y = 9 and x + 7y = 22.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning