Suppose we have a circle with the equation x^2 +y^2 =25. What is the equation to the tangent to the circle at point (4,3)?

Firstly lets draw it out-Draw a line from the origin to the point. calculate the change in y over change in x =(3-0)/(4-0)=3/4Take negative reciprocal which is equal to m. Then do y-y1=m(x-x1 ) or y = mx +c to get the final answer y=-(4/3)+25/3

NM
Answered by Nayan M. Maths tutor

2654 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a right-angled triangle calculate the length of the hypotenuse when the side lengths at 5cm and 7cm. Leave your answer as a surd.


Solve the curve xy=2 and x+y=3


Work out ∛16 as a power of two. (AQA GCSE Higher paper 2017, Q24b)


Two simultaneous equations are given as 2x + y = 5 and 3x + y = 7. Find the value of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning