Point A has coordinates (-1,3). Point B has coordinates (2,-3). Find the equation of the line L that goes through these two points. Point C has coordinates (0,1). Hence or otherwise, find the equation of the line perpendicular to L that goes through C.

First we use the equation gradient = (y1-y2)/(x1-x2) to find the gradient of the line L, using point A (-1,3) and point B (2,-3). This gives us gradient = (3-(-3)/(-1-2) = (3+3)/(-3) = -2. Now we substitute point A into the equation y = mx +c where m is the gradient we just calculated. So 3 = -2*-1+c, so c = 1, and the line equation is y = -2x+1 To find a perpendicular line we use the 'negative reciprocal' of the gradient which means -1/m to find the gradient of the second line. Now we have another gradient, and another point C so we can find the equation of the new line. The new gradient = -1/(-2) = 1/2. So y = 1/2x + c. Using point C (0,1) : 1 = 1/2*0 + c, so c = 1. The second line has equation y = 1/2x + 1

AG
Answered by Asa G. Maths tutor

3380 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a school 2/5 students play an instrument. Of those students 3/7 play the violin. Find the ratio of students who play the violin compared to the students who do not play the violin.


Solve this simultaneous equation using the process of elimination: -6x - 2y = 14 3x - 2y = 5


ABCD is a rhombus on a graph. B(7,10). AC: y=7-4x. Find an equation for DB in the form tx+py+r=0 where t,p&r are integers.


Solve these simultaneous equations: 3x-5=-4y and 2xy=-4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning