a) Find the indefinite integral of sec^2(3x) with respect to x. b) Using integration by parts, or otherwise, find the indefinite integral of x*sec^2(3x) with respect to x.

a) First deduce that problem can be solved by inspection. Then use the fact that the derivative of tan3x equals 3sec^2(3x) and adjust for the constant. (Note this fact should be given in a formula booklet).b) Decide which part of the expression you will differentiate and which part you will integrate (note part a of the questions asks you to integrate something so this is a big hint. You can also use acronym LIATE). Use integration by parts formula which should also be given but it is handy to memorize it. Work carefully through algebra. (Note I will write the math on the whiteboard).

ER
Answered by Ebrahim R. Maths tutor

3580 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following definite integral: f(x)=3e^(2x+1) for the limits a=0 and b=1, leaving your answer in exact form.


Differentiate y= (3x^2+2x-6)^8


The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y


Calculate the gradient of the function y=x^2+6x when y=-9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning