Write x^2+4x-12 in the form (x+a)^2+b where a and b are constants to be determined.

This method is known as completing the square. To find the constant a, we must halve the coefficient of x, which in this case is 4. This is to compensate for the double term when expanding the brackets. So a=4/2 =2. To find b, we subtract a^2 from the constant at the end of the expression, which in this case is -12. This is to compensate for the extra a^2 term that will appear once expanding the brackets. So b = -12 -2^2 = -12-4 =-16.

PG
Answered by Priya G. Maths tutor

6180 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Put the following in order of size, smallest first: 8/sqrt3, sqrt6*sqrt2, sqrt48-sqrt27


What is 15% of 640?


How many solutions does a quadratic equation have?


Given 4x+7y=25 and 2x+5y=17, identify x and y by solving the simultaneous equations


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning