Write x^2+4x-12 in the form (x+a)^2+b where a and b are constants to be determined.

This method is known as completing the square. To find the constant a, we must halve the coefficient of x, which in this case is 4. This is to compensate for the double term when expanding the brackets. So a=4/2 =2. To find b, we subtract a^2 from the constant at the end of the expression, which in this case is -12. This is to compensate for the extra a^2 term that will appear once expanding the brackets. So b = -12 -2^2 = -12-4 =-16.

PG
Answered by Priya G. Maths tutor

5918 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do we expand (3y-2)^2?


How would I simplify this? (x-2)(x+3)


Make x the subject of the formula: 3(2x-y)=ax-4


The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) . The straight line L2 passes through the origin and has a gradient of -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning