The equation of the line L1 is y=3x–2. The equation of the line L2 is 3y–9x+5=0. Show that these two lines are parallel.

The first thing that you should know when wanting to find out if two lines are parallel are the features of a parallel line. These key features include never intersecting lines which means they continue forever without touching and identical slopes also called gradients which means the change in y over the change in x for both lines are the same. Once you remember the key features, you will look at both equations and see that the equation of the line L1 is in a different format to the equation of line 2, so to make it easier to decide whether the lines are parallel, you will need to get them both into the same format. Therefore, you will rearrange the equation of line L2 by taking the gradient and the y intercept onto the other side of the equal sign and you will get 3y = 9x - 5. Now, to get the y on its own you will need to divide both sides by 3 and you will get y = 3x - 5/9. Now that you have both equations in the same format you can see that they both have the same slope of 3x and therefore you can conclude that these two lines are parallel.

KP
Answered by Karina P. Maths tutor

2933 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A ship is 180 kilometres away from a port P on a bearing of 63 degrees. Another ship is 245 kilometres away from port P on a bearing of 146 degrees. Calculate the distance between the two ships.


Divide 711 in the ratio 4:5


Work out the value of 81^(-1/4) (Non-Calculator)


Express 50p as a fraction of £4 and give your answer in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning