Solve simultaneously, x+y=2 and 4y^2-x^2=11

(1) x + y = 2(2) 4y2 - x2 = 11
Rearrange (1) to x= 2-y & substitute x=2-y into equation (2)
Simplify the new equation to 3y2+4y-15 = 0, use quadratic formula or simplify to (3y-5)(y+3)=0 and solve to get
y1= 5/3 y2 = -3
Substitute the values of y1 and y2 into equation one and solve for the 2 values of x
y1= 5/3 x1= 1/3 y2 = -3 x2 = 5
Substitute answers for x and y back into the original equations to verify they are correct

NN
Answered by Nicholas N. Maths tutor

4079 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you know when to add probabilities together and when to multiply them together


Solve the simultaneous equations: 3x+2y = 11, 2x-5y=20


y = (x/3) - 14. Rearrange this equation to make x the subject.


There is a bag of blue, red, and white counters. 1/6 of the bag is blue counters. 1/4 of the bag is red counters. What is the smallest number of white counters that could possibly be in the bag.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning