Solve the simultaneous equations 5x + y = 21, x - 3y = 9

To solve, begin by multiplying both sides of the first equation by 3. This will make the coefficients of y in each equation an equal value of 3. With 15x + 3y = 63 and x -3y = 9, we can now simply add the equations together to remove the unknown y.This gives us 16x = 72.This makes x equal to 72/16. We can simplify this fraction by dividing both the numerator and denominator by 8, giving us 9/2 or 4.5.To solve for y, we just substitute this value into either of the two initial equations, for example the second one. This gives 4.5 - 3y = 9We can subtract the 4.5 from 9 on the right hand side, to get -3y = 4.5Then divide through by -3, 9/2 divided by -3 = -3/2 or -1.5.Now we have both answers, x = 4.5, y = -1.5

EB
Answered by Ellie B. Maths tutor

4013 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations to find the values of x and y: 3x + 5y = -4 and 10x - 4y = -34


y=x^2+5x+6 solve for x


3x+2y=18, 2x-y=5 solve for x and y


Find x for: x^2 + 5x = 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences