Solve the simultaneous equations 5x + y = 21, x - 3y = 9

To solve, begin by multiplying both sides of the first equation by 3. This will make the coefficients of y in each equation an equal value of 3. With 15x + 3y = 63 and x -3y = 9, we can now simply add the equations together to remove the unknown y.This gives us 16x = 72.This makes x equal to 72/16. We can simplify this fraction by dividing both the numerator and denominator by 8, giving us 9/2 or 4.5.To solve for y, we just substitute this value into either of the two initial equations, for example the second one. This gives 4.5 - 3y = 9We can subtract the 4.5 from 9 on the right hand side, to get -3y = 4.5Then divide through by -3, 9/2 divided by -3 = -3/2 or -1.5.Now we have both answers, x = 4.5, y = -1.5

EB
Answered by Ellie B. Maths tutor

4153 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I expand (x-2)(3x+3) into a quadratic?


What are surds and why are they used?


Simplify √48


A lorry can travel 35 miles per litre of diesel that costs £7.30 per litre. What is the cost in £ (to the nearest 2 decimal places) of the diesel used in driving the lorry 200 miles?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning