Solve the simultaneous equations 5x + y = 21, x - 3y = 9

To solve, begin by multiplying both sides of the first equation by 3. This will make the coefficients of y in each equation an equal value of 3. With 15x + 3y = 63 and x -3y = 9, we can now simply add the equations together to remove the unknown y.This gives us 16x = 72.This makes x equal to 72/16. We can simplify this fraction by dividing both the numerator and denominator by 8, giving us 9/2 or 4.5.To solve for y, we just substitute this value into either of the two initial equations, for example the second one. This gives 4.5 - 3y = 9We can subtract the 4.5 from 9 on the right hand side, to get -3y = 4.5Then divide through by -3, 9/2 divided by -3 = -3/2 or -1.5.Now we have both answers, x = 4.5, y = -1.5

EB
Answered by Ellie B. Maths tutor

4015 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Celine has £5 to buy pens and rubbers. Pens are 18p each. Rubbers are 30p each. She says “I will buy 15 pens. Then I will buy as many rubbers as possible. With my change I will buy more pens.” How many pens and how many rubbers does she buy? [5 marks]


A right-angled triangle has a base of 5 cm, a height of 12 cm. Find the length of the hypotenuse.


5w -3 = 3w + 15


A car depreciates at 8% per year. The initial price of the car is £25,000. How much will the car be worth after 4 years? After how many years will the car be worth less than £14,000?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences