Differentiate x^3(sinx) with respect to x

As we are differentiating a product (two things times together) we can use the product rule which is if:

                       y = u(x)v(x)

then

                  dy/dx = u(dv/dx) + v(du/dx).

So firstly looking at our equation we need to identify u(x) and v(x). In our case

u(x) = x3 ​        and       v(x) = sinx

Now we need to differentiate both of them seperatly so (remember when we differentiate we times by the old power and then subtract a power)

du/dx = 3x​2          ​and       dv/dx = cosx

Now putting all this into the formula we have

    dy/dx = u(dv/dx) + v(du/dx)

             = x3​cosx + sinx(3x2​)

Then rearranging this we get

        dy/dx = x​3​cosx + 3x2sinx

SC
Answered by Sophie C. Maths tutor

31113 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  


For the curve f(x) = 2x^3 - 54x, find the stationary points and state the nature of these points


State the trigonometric identities for sin2x, cos2x and tan2x


With log base 4, solve log(2x+3) + log(2x+15) = 1 + log(14x+5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences