Differentiate x^3(sinx) with respect to x

As we are differentiating a product (two things times together) we can use the product rule which is if:

                       y = u(x)v(x)

then

                  dy/dx = u(dv/dx) + v(du/dx).

So firstly looking at our equation we need to identify u(x) and v(x). In our case

u(x) = x3 ​        and       v(x) = sinx

Now we need to differentiate both of them seperatly so (remember when we differentiate we times by the old power and then subtract a power)

du/dx = 3x​2          ​and       dv/dx = cosx

Now putting all this into the formula we have

    dy/dx = u(dv/dx) + v(du/dx)

             = x3​cosx + sinx(3x2​)

Then rearranging this we get

        dy/dx = x​3​cosx + 3x2sinx

SC
Answered by Sophie C. Maths tutor

32035 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = arcsec(x), Find dy/dx.


Find the value of (cos(x) + sec(x))^2 with respect to x when evauated between pi/4 and 0


Statistics: Dave throws a ball at a bucket. The probability the ball goes into the bucket is 0.4. Dave throws the ball four times. What is the probability that he gets it in twice?


What is the integral of (6x^2 + 2/x^2 + 5) with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning