y is directly proportional to (d+2)^2, when d=5, y=147. d^2 is inversely proportional to x^2, when d=2, x=3. Find an equation for y in terms of x

Though this question initially appears complex, it can be broken down into logical steps that make the answer straightforward to find. The two statements should be approached individually, to give an equation for y in terms and d, and another for d in terms of x. The equation for d in terms of x can be substituted into the equation for y in terms of d, to give an equation for y in terms of x
Finding the first equationy ∝ (d+2)2y = k(d+2)2147 = k X 72147 = 49kk =3y = 3(d+2)2 (1)
Finding the second equationd2 ∝ 1/x2d2 = k/x24 = k/9k = 36d2 = 36/x2d = 6/x (2)
Subsituting for the final equationSubstituting (2) into (1)y = 3((6/x)+2)2

LR
Answered by Lucy R. Maths tutor

2514 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

how do ratios work


David travels from home to work at 30 mph. At the end of the day, he travels from work back home via the same route at 40 mph. What is his average speed while travelling? (Give your answer as a simplified fraction) (None-Calculator)


solve the inequality 5x + 3> 3x - 6


A farmer has a garden shaped into an isosceles triangle. Its side is 7m. He needs to enclose the perimeter, using copper wires, in order to avoid undesirable incidents. Each meter of copper wire cost 2£. How much does he need to pay to secure his garden?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences