Simplify fully 3/(2x + 12) - (x - 15)/(x^2 - 2x - 48)

The first step to answering this question is recognising that the denominators should be factorised to find any common factors. Factorising 3/2x+12 gives 3/2(x+6) and factorising (x-15)/(x2-2x-48) gives (x-15)/(x+6)(x-8). The student should then see that the next step would be to put them both over a common denominator so that they can then be subtracted. To do this the first term can be multiplied by (x-8)/(x-8). Then the second term can be multiplied by 2/2. Another way of saying this would be to multiply the top and the bottom of the first fraction by (x-8) and the second one by 2. This then gives 3(x-8)/2(x-8)(x+6) - 2(x-15)/2(x-8)(x+6). The student should then combine the fractions into 1 which is 3(x-8)-2(x-15)/2(x+6)(x-8). The brackets on the top should then be expanded and the expression simplified to (x+6)/2(x+6)(x-8). An easy mistake to make is to forget that the - outside and the - inside create a +. The (x+6) then cancel and the simplified expression is 1/2(x-8)

AC
Answered by Archie C. Maths tutor

5287 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would I go about drawing a graph if i had no idea how to start?


Solve 13-x > 3+4x


Solve the simultaneous equations for x and y: 2x - 3y + 4 = 0 , x - 2y + 1 = 0.


Re-arrange [4x+ 9t + 8s= 3g] to make x the subject of the formula


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning