There are m fruits in a basket. 3 of the fruits are kiwis; the rest are lemons. The probability of picking two kiwis in a row (without replacement) is 0.3. Show m^2 - m - 20 = 0.

Number of lemons = m - 3. Construct a tree diagram using the information given to represent picking two fruits out of the basket (without replacement) one after the other. Since picking each fruit is an independent event, just multiply probabilities to find the probability of selecting a kiwifruit twice in a row: P(two kiwifruits in a row) = 3/m * 2/(m - 1) and set this equal to 0.3 (given in the question). A bit of rearrangement of the algebra gives: 3/10 = 6/[m(m - 1)] => 3m(m - 1) = 60 => m(m - 1) = 20 => m2 - m - 20 = 0 as required.

HW
Answered by Heather W. Maths tutor

2842 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify fully (y+3)^2


How do I make x the subject of the formula?


give the values of x when 2x^2+5x-3=0


There are N counters in a bag, 4 being red and the rest being blue. I take two counters at random from the bag (without replacing the first).The chance i take two blue counters is 1/3, See below in the answer box


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning