Solve x^2 - 7x > -6

We want to find the values of x for which this inequality is 0. Let's first fine the values of x for which x2- 7x = -6.Rearranging, x2 - 7x + 6 = 0. Now we're looking for the values of x for which x2 - 7x + 6 > 0 which is the same as our first inequality.Solve this quadratic using an appropriate method.x2 -x -6x + 6 = 0x(x-1) -6(x-1) = 0(x-6)(x-1) = 0x = 6 or x = 1At these values, x2 - 5x + 6 = 0. Look at what happens as we increase or decrease our values of x by creating a timeline. Is it positive or negative?First look at x = 1. Try a value of x less than 1. Try x = 0(0)2 - 7(0) + 6 = 6 which is greater than 0. This is what we want. So we know a possible answer to our question is x < 1So when x < 1, x2 - 7x + 6 > 0Try a value in between x = 1 and x = 6. Try 2(2)2 -7(2) + 6 = 2 - 14 + 6 = -6So when x > 1 and x < 6, x2 - 7x + 6 < 0. So we don't want any of the values of x in between 1 and 6. Because x2 - 7x + 6 is a quadratic and quadratics change sign when they cross the x -axis at y = 0, we now know that it will be positive, greater than 0, when x > 6. We can check this by trying x = 7.(7)2 -7(7) + 6 = 6 because 7(7) = 72 so 72 - 7(7) = 0Therefore, x2 - 7x + 6 > 0 and x2- 5x > -6 are true when x < 1 or x > 6.

LG
Answered by Lucas G. Maths tutor

4066 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 10 boys and 20 girls in a class. In a class test, the mean score of the boys is 77. The mean score of the girls is 80. What is the mean score of the whole class?


Express 56 as the product of its prime factors.


Before an exam, I always go through as many past papers as possible but I still don't know how to do the questions on an exam when they come up, why and what can I do?


A farmer has 30 boxes of eggs. There are 6 eggs in each box. Write, as a ratio, the number of eggs in two boxes to the total number of eggs. Give your answer in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning