Prove algebraically that the straight line with equation x - 2y = 10 is a tangent to the circle with equation x^2 + y^2= 20

rearrange line equation: x=10 + 2ysubstitute into circle equation: (10+2y)2 + y2=20expand: 4y2 +20y +20y + 100 + y2= 20 collect terms: 5y2 + 40y +100 = 20move all to one side: 5y2 + 40y + 80=0divide by 5: y2 + 8y + 16=0factorise: can use quadratic equation but this one is easy to spot:(y+4)2 =0therefore they meet at y= -4x= 10 + 2(-4) =2line meets the circle at (2, -4)as there is only one point of intersection, it is therefore a tangent

AB
Answered by Annabel B. Maths tutor

10764 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Alex designs a game for people to play, using two fair five-sided spinners. A person wins the game when both spinners land on the same letter. People pay 40p for each game they play. The prize for a win in £1. Is she likely to raise money?


The first three terms of a sequence are a, b, c. The term-to-term rule of the sequence is 'Multiply by 2 and subtract 4'. Show that c = 4(a – 3).


How would I make S the subject of the formula in the equation V^2 = U^2 + 2AS


Simplify 2a^3 b × 5a^2 b^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences