Prove algebraically that the straight line with equation x - 2y = 10 is a tangent to the circle with equation x^2 + y^2= 20

rearrange line equation: x=10 + 2ysubstitute into circle equation: (10+2y)2 + y2=20expand: 4y2 +20y +20y + 100 + y2= 20 collect terms: 5y2 + 40y +100 = 20move all to one side: 5y2 + 40y + 80=0divide by 5: y2 + 8y + 16=0factorise: can use quadratic equation but this one is easy to spot:(y+4)2 =0therefore they meet at y= -4x= 10 + 2(-4) =2line meets the circle at (2, -4)as there is only one point of intersection, it is therefore a tangent

AB
Answered by Annabel B. Maths tutor

10354 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

solve the following simultaneous equations 4x + 6y = 16 and x + 2y = 5


Differentiate y = 3x^4 + 6x^3


Write 32 X 8^(2x) as a power of 2 in terms of x.


There are n sweets in a bag, 6 of which are orange. If the probablility of eating 2 orange sweets from the bag, one after the other, is 1/3, show that n^2 - n - 90 = 0. State any assumptions made.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences